User manual

Compressor Controller

update 7/2024

Contents

1.	1. General information		
	1.1.	Controller description	
	1.2.	Input and output list	
	1.3.	Language versions	
2.	Safet	y information 10	
3.	Desc	ription of connectors 11	
4.	Techr	nical specification 14	
	4.1.	Electrical parameters	
	4.2.	Mechanical parameters	
	4.3.	Operating conditions	
5.	User	interface 15	
	5.1.	Front panel	
6.	Grap	hical user interface 17	
0.	6.1.	Main view	
	6.2.	Main view shortcuts	
	6.3.	Compressor status icon	
	6.4.	Error and warning icon	
	6.5.	Navigating the graphic user interface	
		6.5.1. Navigating the main view	
		6.5.2. Basic menu types	
		6.5.3. Sidebar	
		6.5.4. Log in screen	
		6.5.5. Configuring parameters	
		6.5.6. Screen messages	
	6.6.	Main menu	
		6.6.1. Search parameter	
		6.6.2. Information	
		6.6.3. Sensors	
		6.6.4. Counters	
		6.6.5. Events	
		6.6.6. Statistics	
7.	User	Preferences 29	
	7.1.	Adjusting the display brightness	
	7.2.	Screen saver configuration	
	7.3.	Units	
	7.4.	Controller language	
	7.5.	Date and time settings	
	7.6.	Compressor name	
8.	User	parameters 31	
•	8.1.	Change user password	
	8.2.	User parameter search	
9	Onera	ating algorithm 35	
0.	9 1	Operating algorithm diagram in Star-Delta configuration 35	
	0.1.	9 1 1 Compressor operating time parameters 36	
	92	Scheme of the control algorithm in the inverter configuration 37	
	0.2.	9.2.1. Compressor operating time parameters	
		9.2.2. PID Controller	
		9.2.3. Set pressure	
	93	Primary operation algorithm in Direct Start configuration	
	0.01		

		9.3.1. Compressor operating time parameters
	9.4.	Idle run
		9.4.1. Adaptive idle run (AutoTlse)
	9.5.	Decompression control method
10.	ULTR	A SPEED function 43
11.	Comp	ressor and controller operation settings 44
	11.1.	Operation modes
		11.1.1. Automatic mode (AUTO)
		11.1.2. Continuous mode (CONST)
	11.2.	Remote modes
		11.2.1. Local control mode (LOCAL)
		11.2.2. Network mode NET
		11.2.3. Remote control mode REM 45
		11.2.4. REM remote control mode configuration 45
		11.2.5. RVM remote control mode
		11.2.6. RVM remote control mode configuration 46
		11.2.7. Remote start function
		11.2.8. Remote start configuration
		11.2.9. Differences between REM and RVM remote modes and the remote start
		function
12.	Other	functions 47
	12.1.	Fan function (compressor cooling) 47
	12.2.	Dryer function
	12.3.	Condensate drain function
		12.3.1. Condensate drain function configuration
	12.4.	Auto restart function
	10 F	12.4.1. Auto restart function configuration
	12.5.	Heater function
		12.5.1. Healer 1
		12.5.2. Hedlel 2
	126	12.5.5. Idle field(fing) 49 Destoring and saving softings 40
10	Diagr	
13.		Insut/output diagnostics
	13.1. 12.2	
	13.2.	
14.	Servi	Se counters 52
	14.1.	Restarting service counters
15.	Statis	tics 53
16.	Opera	ation scheduling 54
	16.1.	Event Configuration
	16.2.	Work scheduling algorithm56
17.	Netwo	ork operation 57
	17.1.	Network operation view
	17.2.	Starting network operation and changing the settings of the slave controllers 57
	17.3.	Errors and events in network operation 58
	17.4.	Sequential operation algorithm (SEQ)
	17.5.	Cascading algorithm (CAS) 59
	17.6.	Master controller configuration
	17.7.	Slave controller configuration
18.	Web s	server (Visualization system) 64

	18.1.	Web server - description of the graphical user interface	64
	18.2.	Web server - Desktop	65
	18.3.	Web server - Sensors	66
	18.4.	Web server - Consumption	67
	18.5.	Web server - Messages	67
	18.6.	Web server - Service counters	67
	18.7.	Web server - Scheduled operation	67
	18.8.	Web server - Information	67
	18.9.	Initiating and configuring connection with the web server	67
19.	Warni	ings and errors	69
	19.1.	Warnings	69
	19.2.	Warnings of the controller	69
	19.3.	DANFOSS inverter warning information	71
	19.4.	YASKAWA inverter warning information	72
	19.5.	Delta inverter warning information	72
	19.6.	ABB inverter warning information	73
	19.7.	Errors	73
	19.8.	DANFOSS inverter errors	75
	19.9.	YASKAWA inverter errors	76
	19.10	. Delta inverter errors	76
20.	Contr	oller dimensions	79

List of Tables

1	Description of digital outputs (X1, X2 DIGITAL OUTPUTS)	11
2	Description of communication outputs (X3,X4)	11
3	Description of RS-485 ISO connector (X5)	12
4	Description of digital inputs (X6 DIGITAL INPUTS)	12
5	Description of analog inputs (X7 ANALOG INPUTS)	12
6	Description of 5A current transformer input (X8 MOTOR CURRENT INPUT)	12
7	Description of RS-485 connector (X9)	12
8	Description of power outlets (X10 POWER)	13
9	List of electrical parameters	14
10	Mechanical parameters	14
11	Permissible operating conditions	14
12	Description of LED operation	15
13	Button operation description	15
13	Button operation description	16
14	List of main view shortcuts	17
17	Parameters from the "Consumption" tab	28
18	List of user parameters	31
18	List of user parameters	32
18	List of user parameters	33
19	List of user parameters	34
20	List of compressor operating time parameters	36
20	List of compressor operating time parameters	37
21	List of compressor operating time parameters	38
22	List of time parameters for compressor operation	40
22	List of time parameters for compressor operation	41
23	Parameters from the "Statistics" tab	53
24	Warnings	69
24	Warnings	70

24	Warnings	1
25	Inverter warnings	1
25	Inverter warnings	2
26	Inverter warnings	2
27	Inverter warnings	2
27	Inverter warnings	3
28	ABB inverter warning information	3
29	Errors	4
29	Errors	5
30	Inverter errors	5
30	Inverter errors	6
31	Inverter errors	6
32	Inverter errors	6
32	Inverter errors	7
32	Inverter errors	8

List of Figures

1	Controller visualisation	7
2	Electrical terminals of the controller	1
3	Controller front panel	5
4	Main view with sections divided	7
5	The active events tab is accessible via a quick transition between pages	9
6	Controller main menu	9
7	Example matrix menu	C
8	Example list type menu	С
9	Side bar with visible indication of network pressure and icons for error, warning and	
	emergency button	1
10	Authorization screen	1
11	Parameter subgroup tiles showing work parameters	2
12	Parameter tiles showing a subgroup of network operation configuration parameters 22	2
13	The on-screen keypad showing start minimum oil temperature	3
14	List example	3
15	On-screen message example	4
16	Main menu	4
17	Access level selection	5
18	Parameter search menu	5
19	Sensors view	6
20	"Service counters" tab	7
21	Event history tab	3
22	Statistics tab	9
23	Motor control algorithm	5
24	View of the menu with time parameter settings for the Star-Delta configuration 36	6
25	Motor control algorithm	7
26	Menu view with time parameter settings for the Inverter configuration	3
27	Network pressure settings	9
28	Motor control algorithm	9
29	View of the menu with time parameter settings for Direct Start configuration 40)
30	View of the controller screen in the manual control tab of the Y valve)
31	Safety valve test start warning 52	1
32	The "Service counters" tab"	2
33	Statistics tab	3

34	The main view of the "Operation scheduling" menu.	54
35	Example of configuration of scheduled operation event	55
36	Example of event activity date configuration	55
37	Network operation view	57
38	The RS-485 port configuration menu	60
39	Network operation configuration menu 1/3	60
40	Network operation configuration menu 2/3	61
41	Network operation configuration menu 3/3	61
42	Network operation menu	62
43	Slave compressor 1 configuration menu	62
44	The RS-485 port configuration menu	63
45	Remote mode setup menu	63
46	Web server navigation sidebar	65
47	Top web server info bar	65
48	Web server dashboard view	66
49	IP address configuration menu	68
50	Controller housing drawing	79

1. General information

Figure 1: Controller visualisation

1.1. Controller description

Controller dedicated for compressors with a power of up to 22 kW. The controller can work with compressors operating in a star-delta configuration or equipped with an inverter.

Controller features:

- 3.5" color display
- · Built-in web server
- Creating statistics
- Supervision function: network pressure, oil pressure, oil temperature, motor temperature and motor current
- Control of oil heaters, air dryer and condensate drain
- · Freely configurable controller inputs and outputs
- Automatic restart function
- Inverter control using the Modbus RTU protocol (selection of standard Yaskawa, Danfoss, ABB and Delta inverter)
- Star-delta or direct start-up (for compressors without inverter)
- · Service parameters and user with access control menu
- · Service counters and working time counters
- Network operation mode supporting up to 4 compressors
- Remote operation mode (using digital input)
- Operation scheduling with a division into cyclical and one time events, up to 5 events in total

• Software update via USB port

1.2. Input and output list

- 1. The controller is equipped with 2 RTD inputs to support resistive temperature sensors and has the possibility of independent configuration of each input to a selected sensor (PT100, PT1000, KTY84, PTC). Thanks to the RTD temperature inputs, the controller can control the following parameters:
 - Oil temperature
 - Motor temperature
- 2. The controller is equipped with 2 analog inputs to support 4-20 mA sensors. The measuring range can be configured from the controller. Supported parameters:
 - Network pressure
 - Oil pressure
- 3. The controller is equipped with 1 analog input to operate a 5 A standard current transformer. The primary winding current can be freely configured from the controller level.
- 4. The controller is equipped with 6 digital inputs to support sensors or binary signals with the possibility of configuring the default logic (normally open/normally closed) for each input independently. Supported sensors or signals:
 - Suction sensor
 - Dryer ready
 - Remote start-stop
 - Remote load-unload signal
 - Emergency stop
 - Power supply asymmetry
 - Phase sequence error signal
 - Overload relay error signal
 - Air filter error signal
 - Oil filter error signal
 - Separator error signal
 - AFOFSEP error signal (common error for air filter, oil filter and separator)
 - Fan error signal
- 5. The controller is equipped with 7 configurable digital (relay) outputs, including:
 - 3 outputs with common potential
 - 3 outputs with independent potential
 - 1 NO/NC output with independent potential

Functions that can be configured on each of the outputs:

- · Main power supply
- Star
- Delta
- Y valve
- Condensate drain
- Fan
- Dryer
- Heater 1
- Heater 2
- Warning
- Error
- Warning/error status
- Ready
- Running
- Compressing
- Service
- 6. The controller is equipped with 1 USB sockets and 1 Ethernet socket

1.3. Language versions

Controller has 4 language versions:

- Polish
- English
- German
- Russian

It is possible to develop other language versions in consultation with the controller manufacturer.

2. Safety information

Before controller installation and start, refer to the user's manual and warranty terms and conditions. Incorrect installation and operation not in line with the manual will void the warranty.

All connection and assembly work must be carried out with the power supply disconnected.

Installation work should be carried out by an authorized service provider or authorized personnel.

To comply with safety standards, the PE terminal of the controller should be connected to the PE protective conductor.

Any use or operation of the controller without the housing installed is not allowed, as this poses a risk of electric shock.

Exposing the controller to water or operating in conditions of excessive humidity may cause damage.

Before starting, check that all connections are correct, according to the connection diagram in the user's manual.

Before starting the controller, check that the power supply meets the requirements specified in the user's manual.

Repairs must only be carried out by the manufacturer's service. Repairs carried out by an unauthorized person will make the warranty null and void.

3. Description of connectors

Figure 2: Electrical terminals of the controller

Table 1: Description of digital outputs (X1, X2 DIGITAL OUTPUTS)

Name	Description
REL1	Two outputs of the configurable relay output 1
REL2	Two outputs of the configurable relay output 2
REL3	Two outputs of the configurable relay output 3
COM 4-6	Common output of relay outputs from 4 to 6
REL4	Configurable relay output 4
REL5	Configurable relay output 5
REL6	Configurable relay output 6
REL7 COM	Common terminal of the relay output 7
REL7 NC	N/C contact (normally closed) of relay 7
REL7 NO	N/O contact (normally open) of relay 7

Table 2: Description of communication outputs (X3,X4)

Name	Description
ETHERNET	Ethernet port (RJ45)
USB	USB port

Table 3: Description of RS-485 ISO connector (X5)

Name	Description
GND	Isolated RS-485 interface ground
В	Isolated RS-485 interface reversing line
A	Isolated RS-485 interface non-reversing line

Table 4: Description of digital inputs (X6 DIGITAL INPUTS)

Name	Description
+24V	Internal reference voltage output
DI1	Configurable digital input 1
DI2	Configurable digital input 2
DI3	Configurable digital input 3
DI4	Configurable digital input 4
DI5	Configurable digital input 5
DI6	Configurable digital input 6

Table 5: Description of analog inputs (X7 ANALOG INPUTS)

Name	Description
+24V	Analog input 1 power supply
Al1	Analog input 1
+24V	Analog input 2 power supply
AI2	Analog input 2
GND	Ground terminal
GND	Resistive temperature sensor 1 ground
RTD1	Resistive temperature sensor input 1
GND	Resistive temperature sensor 2 ground
RTD2	Resistive temperature sensor input 2

Table 6: Description of 5A current transformer input (X8 MOTOR CURRENT INPUT)

Name	Opis
GND	Ground terminal of MC1 input
MC1	Motor current measure input MC1

Table 7: Description of RS-485 connector (X9)

Name	Description
A	RS-485 interface non-reversing line
В	RS-485 interface reversing line
GND	RS-485 interface ground

Table 8: Description of power outlets (X10 POWER)

Name	Description
PE	PE Connector
VAC	Controller supply voltage (24 VAC)
VAC	Controller supply voltage (24 VAC)

The controller is equipped with a housing ground terminal, which is located next to X10 connector.

4. Technical specification

4.1. Electrical parameters

Parameter	Value	
Supply voltage	24 VAC 50/60 Hz +/- 10%	
Power consumption	Up to 10 W	
Relays - maximum switching voltage	250 VAC	
Maximum load sum of REL4, 5, 6 relay group (resistive)	4 A	
Maximum load of each of the REL1, 2, 3 relays (resistive)	3 A	
REL7 relay maximum load (resistive)	3 A	
Maximum relays load (inductive)	0,5 A	
Maximum current in the current loop	28 mA	
Maximum power consumption from internal reference	250 mA	
voltage		
Digital inputs - minimum voltage	-0,5 VDC	
Digital inputs - maximum voltage	24,7 VDC	
Analog inputs - minimum voltage	-0,5 VDC	
Analog inputs - maximum voltage	24,7 VDC	

Table 9: List of electrical parameters

4.2. Mechanical parameters

Table 10: Mechanical parameters

Parameter	Value	
Housing dimensions	176 x 106 x 38 mm	
Weight (without packaging)	465 g	
Assembly	Clips	

4.3. Operating conditions

Table 11: Permissible operating conditions

Parameter	Value	
Operating temperature	-15 ÷ 50°C	
Storage temperature	-20 ÷ 70°C	
Relative humidity	10 ÷ 90%, no condensation	

5. User interface

5.1. Front panel

On the front panel, you will find:

- 9 buttons
- 2 LEDs indicating compressor status
- A display screen showing the graphical user interface

Figure 3: Controller front panel

Table 12: Description of LED operation

LED	Colour	LED behaviour	
START	Green	Constant - compressor running (compression, idle mode)	
		Pulse - Motor startup	
STOP	Red	Constant - compressor not running	
		Pulse - compressor shutting down or waiting for pressure drop	

Table 13:	Button	operation	description
-----------	--------	-----------	-------------

Button	Function
START	Allow compressor to start working
STOP	Stop compressor operation
Up	Navigation arrow in the graphical user interface
Down	Navigation arrow in the graphical user interface
Right	Navigation arrow in the graphical user interface
Left	Navigation arrow in the graphical user interface

Table 13: Button operation description

Button	Function
ОК	Confirm action
Back	Go return to previous level of graphical user interface
Menu	Switch to main menu

6. Graphical user interface

6.1. Main view

Figure 4: Main view with sections divided

Description of individual sections:

- 1. Pressure gauge in the network, pressure settings
- 2. Shortcut indicator available from the main view
- 3. Error icons and warnings
- 4. Icon indicating current compressor status
- 5. Operation mode icon
- 6. Current date and time
- 7. Text display showing text messages related to compressor status
- 8. Basic parameters display showing compressor operation

6.2. Main view shortcuts

The controller has the ability to quickly switch from the main view to selected user interface tabs. This can be done using the left and right arrow buttons.

Dots in the top left corner of the display indicate which shortcut view is currently selected.

Table 14: List of main view shortcuts

Tab name	Position relative to main view
Main view	-
Active events	<
Sensors	>
Network work view *	>>

*-Shortcut only visible when the controller's main mode is enabled.

6.3. Compressor status icon

The icon on the side panel of the user interface informs about the current status of the compressor.

6.4. Error and warning icon

Error and warning icons inform about errors and warnings that occur on the controller or occurred in the past, and may vary visually depending on the location on the graphical user interface.

6.5. Navigating the graphic user interface

The user graphic interface is operated using a set of buttons located on the front panel of the controller. The arrow buttons allow you to move between the available fields in the menu data, the cursor in the form of a blue frame indicates which field is currently selected.

To select a specific field move the cursor over a field and confirm your selection with the "OK" button. The button with a 180-degree curved arrow symbol is the "Undo" button. It allows you to go back to the previous view of the graphic interface, pressing it repeatedly (the number of presses depends on the level of nesting of the specified menu) will always move you to the main view.

The button with the symbol of three horizontal dashes is the "Menu" button, pressing it takes you directly to the main menu.

More detailed descriptions are included in the sections dedicated to each function.

6.5.1. Navigating the main view

The main view of the controller allows you to quickly navigate to tabs such as "Active events", "Sensors" and "Network operation view" by using the left and right arrow buttons.

"Network operation view" is only visible if the controller is configured as a master.

Figure 5: The active events tab is accessible via a quick transition between pages

Figure 6: Controller main menu

6.5.2. Basic menu types

The user interface is divided into 2 basic menu types (tabs), which differ in the way they are navigated. The first type is a matrix menu, navigation in this case is done using the left, right, top and down buttons.

The second type is a menu in the form of a list, in which navigation is possible using the up and down buttons. If there are more parameters in the list than can fit on the display at the same time, the numbering of the subpages on which the parameters are located is displayed in the upper left corner. The left and right buttons allow you to quickly move to the next page.

1/2	Service counters	
	General service counter	OFF
	Oil change counter	2000 h
	Oil filter counter	2000 h
	Air filter counter	2000 h
8.1 bar	Separator counter	2000 h

Figure 7: Example matrix menu

Figure 8: Example list type menu

6.5.3. Sidebar

The rectangular bar on the left side of the screen is visible anywhere on the user's graphic interface, it allows you to continuously view the most important parameters of the compressor.

List of information that is displayed on the sidebar:

- Current network pressure
- Motor status
- Active error icon
- · Active warning icon
- Safety button icon
- page numbering in the list

Figure 9: Side bar with visible indication of network pressure and icons for error, warning and emergency button

6.5.4. Log in screen

Some interface functionalities require user or service authorization. To do this, select the appropriate access level icon, enter the password, and confirm with the "LOGIN" button. The entered password is encoded in the form of dots, and the eye icon on the right-hand side allows you to view the entered password. The preview is visible as long as the user presses the "OK" button.

Figure 10: Authorization screen

6.5.5. Configuring parameters

The user's graphic interface stores parameters in subgroups, which are displayed as tiles with descriptions. To go to the desired subgroup, select the tile area with the cursor, and then press the "OK" button.

1/2	Operating parameters
	Operating modes
	Pressures
	Time parameters
	Condensate drain
8.1 bar	Fan

Figure 11: Parameter subgroup tiles showing work parameters

After navigating to the selected subgroup, the parameters will be displayed in the form of tiles displaying the name of the parameter and its current value. To modify the value of a parameter, press the "OK" button when the cursor is on the specified parameter.

The pencil symbol indicates that the specified parameter can be modified. Parameters with a switch symbol are an exception. There is no pencil symbol next to them, but they can be modified.

1/3	Network setup		
	Remote mode	LOCAL	
	Master compressor communication timeout	15 s 🖉	
	Operate as master compressor	OFF	
	Network operation algorithm	SEQ 0	
8.1 bar	Number of slave compressors	3 0	

Figure 12: Parameter tiles showing a subgroup of network operation configuration parameters

A selected parameter, depending on its type, can be configured by entering values from the onscreen keyboard or by selecting an item from a predefined list. The on-screen keyboard may vary depending on the parameter being edited, allowing negative values to be entered (by using the symbol for changing the sign to negative). After entering a new parameter value, the operation must be approved with the "SAVE" button. The permissible range of the parameter is displayed. Under the field where the entered value is displayed. To cancel the change, press the "Undo" button instead of saving the new value.

			Tem	perature
	1	2	3	Minimum motor start oil temperature
	4	5	6	+/- Range: -30 - 30 °C
	7	8	9	
8.1 bar	•	0	×	ACCEPT

Figure 13: The on-screen keypad showing start minimum oil temperature

Parameters which require selecting a value from a predefined list for configuration are another type of parameters.

The "On", "Off" parameters are a special type of such parameters. They are marked with a slider symbol and allow you to change the value without opening the selection list. Just selecting such a parameter changes its value to the opposite of the current one.

		Remote mode	
	LOCAL		0
	NET		\bigcirc
	REM		\bigcirc
	RVM		\bigcirc
8.1 bar			

Figure 14: List example

6.5.6. Screen messages

The controller displays messages addressed to the user in the upper right corner of the screen, in the form of a message window. To close the message window, press any of the buttons on the controller except the "On" and "Off" buttons. These messages inform, for example, that an invalid password has been entered or that the update is in progress. They are not archived in the controller's memory.

Figure 15: On-screen message example

6.6. Main menu

To access the main menu, press the menu button (3 horizontal dashes). From this level, it is possible to select available sub-tabs.

List of sub-tabs:

- User parameters
- Service parameters
- Sensors
- Active events
- Counters
- Statistics
- Operation planning
- Event history
- Information
- Search parameter

Figure 16: Main menu

6.6.1. Search parameter

The "Search parameter" tab allows you to navigate to a specific parameter or group of parameters by entering its number in the search bar.

For a complete list of parameters with their numbers, see the section on parameters.

Figure 17: Access level selection

	Search parameter					
	1	2	3	Parameter number		
	4	5	6	──User		
				⊖ parameter		
	7	8	9	Service		
				- parameter		
8.1		0	$\langle \times \rangle$	ACCEPT		
bar						

Figure 18: Parameter search menu

6.6.2. Information

The "Information" tab contains basic data about the compressor and the controller. You will also see a button used to start the controller software update procedure.

List of data stored in the information tab:

- Software version
- Compressor serial number
- Controller serial number
- Manufacturer information

- Compressor startup method
- Controller IP address
- Controller MAC address

6.6.3. Sensors

In the "Sensors" tab, a preview of the current values of measurements taken by the controller and read from the inverter is available. The preview is available only for active sensors, configured in the input and output parameters. Each value has a unit in which it is displayed, except for the motor temperature for the PTC sensor (in this case, the user can read the correct temperature marked with " \checkmark ", or incorrect marked with "X").

List of values in the sensors tab:

- Network pressure
- Oil pressure
- Oil temperature
- Motor temperature
- Motor current
- Motor power
- Output frequency

	00●	Sensors			
		Network pressure	8.1	bar	
		Oil temperature	11	°C	
		Motor current	0	Α	
		Motor power	0.0	kW	
		Output frequency	0	Hz	
8.1		Output voltage	0	V	
bar					

Figure 19: Sensors view

6.6.4. Counters

The "Counters" tab allows you to view the current values of service counters and modify them. Each counter is presented in the form of a tile containing information about the date of the next service and the remaining number of operating hours. The service counter can be configured for both of the previously mentioned values or only for one of them. In this case, only the configured value is displayed. If the counter is inactive, its tile shows an "OFF" icon.

To reset the counter, select its tile, and then select the "RESTART" parameter. The counter will be restarted to the values defined by the compressor manufacturer. The list of counters may vary depending on the compressor configuration.

List of supported counters:

- General inspection counter
- Oil change counter
- Oil filter counter
- Air filter counter
- Separator counter
- Belt tensioner counter
- Motor bearing lubrication counter
- General purpose counter 1
- General purpose counter 2

1/2	Service counters	
	General service counter	OFF
	Oil change counter	2000 h
	Oil filter counter	2000 h
	Air filter counter	2000 h
8.1 bar	Separator counter	2000 h

Figure 20: "Service counters" tab

6.6.5. Events

The "Events" tab allows you to check the history of errors and warnings that occurred on the controller. Each event has the following parameters assigned: date and time occurrence, content and symbol. The list archives 50 events, and when this number is exceeded, the oldest events are deleted.

Figure 21: Event history tab

6.6.6. Statistics

The controller aggregates sensor measurements and information on compressor operation and presents them in the form of statistics. The "Statistics" tab stores information about the time and cycles of compressor operation. The types of load data are different for star-delta start and inverter compressors.

Parameter name	Parameter description
Total operating time	Total motor operating time
Operating time under load	Total compression time
Average load	Ratio of running time under load to total running time
Number of motor starts	Total number of motor starts
Average number of motor	Average number of motor starts per hour
starts	
Number of Y-valve engage-	Total number of Y-valve engagements
ments	
Load 80% - 100% ^F	Total operating time per load range
Load 60% - 80% ^F	Total operating time per load range
Load 40% - 60% ^F	Total operating time per load range
Load 20% - 40% ^F	Total operating time per load range

|--|

F-Parameter available only for compressors equipped with an inverter

1/3	Statistics	
	Motor work hours	0 h 💋
	Total compression time	0 h 🖉
	Average load	0.0%
	Number of motor starts	45 🖉
8.1 bar	Average motor starts per hour	-

Figure 22: Statistics tab

7. User Preferences

UThe user can configure his preferences in the "User preferences" tab:

User parameters -> User preferences. There you will find a set of settings that do not directly affect the operation of the compressor, but have an impact on the user's comfort in operating the controller.

List of sub-tabs:

- Display
- Units
- Language
- Date and time
- Compressor name

7.1. Adjusting the display brightness

The controller display brightness can be adjusted in the tab: User parameters -> User preferences -> Display. The minimum brightness level available is 10%, the maximum is 100%

7.2. Screen saver configuration

You can enable or disable the screen saver by going to the tab:

User parameters -> User preferences -> Display.

Setting the "Screen saver" switch to "On" or "Off". The "Screen saver delay" parameter defines the number of seconds after which the screen saver will turn on in case of inactivity.

7.3. Units

The controller allows you to configure the units in which the values read from each sensor are displayed, the configuration is available in the tab:

User parameters -> User preferences -> Units.

List of temperature units:

- °C
- °F

List of pressure units:

- bar
- psi

7.4. Controller language

To select a different language version of the user interface, go to the tab: User parameters -> User preferences -> Language.

List of language versions:

- Polish
- English
- German
- Russian

7.5. Date and time settings

To set the correct date and time on the controller, go to the tab: **User parameters -> User preferences -> Date and time**. The controller also allows you to change the time display format to 12 hours.

7.6. Compressor name

The controller allows you to give a name to your own compressor. This allows quick identification of the compressor from the Web server. To enter a compressor name, go to the tab: User parameters -> User preferences -> Compressor name.

Then enter the name using the on-screen keyboard.

8. User parameters

Default user password: 0000

User parameters are available in the "Parameters menu" tab. Access requires a user password, default password is "0000". Parameters are grouped into several submenus. Some parameters are only available in preview mode. The value of parameters in the preview mode can only be viewed. When attempting to modify a parameter that is available for preview only, the controller will display a screen message saying "Too low permission level to change this parameter". The visibility and range of individual parameters may depend on the values of other interdependent parameters.

Name	Modification	Range	Location
Display brightness	Yes	10-100 %	User preferences -> Display
Screensaver	Yes	On; Off	User preferences -> Display
Screensaver delay	Yes	≥0 s	User preferences -> Display
Temperature unit	Yes	°C; °F	User preferences -> Units
Pressure unit	Yes	bar; psi	User preferences -> Units
Language	U	Polish; Eng- lish; German; Russian	User preferences -> Language
Time	Yes	hh:mm	User preferences -> Date and time
Date	Yes	dd-mm-rrrr	User preferences -> Date and time
Time format	Yes	24h; 12h	User preferences -> Date and time
Automatic change to daylight saving time	Yes	On; Off	User preferences -> Date and time
Compressor name	Yes		User preferences -> Com- pressor name
Operation mode	Yes	AUTO; CONST	Operation parameters -> Opera- tion modes
Remote mode	Yes	LOCAL; NET; REM; RVM	Operation parameters -> Opera- tion modes
Network pressure high warning	Yes		Operation parameters -> Net- work pressure
Unload pressure	Yes		Operation parameters -> Net- work pressure
Set pressure ^F	Yes		Operation parameters -> Net- work pressure
Load pressure	Yes		Operation parameters -> Net- work pressure
Low network pressure warning	Yes		Operation parameters -> Net- work pressure
Restart delay	No		Operation parameters -> Time parameters
Main contactor delay	No		Operation parameters -> Time parameters
Motor acceleration time	No		Operation parameters -> Time parameters
Y valve on delay	No		Operation parameters -> Time parameters
Idle time	Yes	10-32767 s	Operation parameters -> Time parameters
Adaptive idle (AutoTlse)	Yes	On; Off	Operation parameters -> Time parameters
Motor deceleration time	No	≥0 s	Operation parameters -> Time parameters

	Table 18:	List of us	ser parar	neters
--	-----------	------------	-----------	--------

Table 18: List of user parameters

Name	Modification	Range	Location
Star-delta changeover time	No		Operation parameters -> Time
			parameters
Condensate drain function	Yes	On;	Operation parameters -> Con-
		Off	densate drain
Drain open time period	Yes	0-720 min	Operation parameters -> Con- densate drain
Drain open time	Yes	0-600 s	Operation parameters -> Con-
Ean function	No		Operation parameters -> Fan
Fan on	No		Operation parameters -> Fan
Fan off	No		Operation parameters -> Fan
Drver function	No		Operation parameters -> Drver
Drving time before compressor start	No		Operation parameters -> Drver
Drving time after compressor stop	No		Operation parameters -> Drver
Duration of pulse mode after compressor	No		Operation parameters -> Drver
stop			
Pulsation period time	No		Operation parameters -> Dryer
Enable time in pulse mode	No		Operation parameters -> Dryer
Waiting time in pulse mode	No		Operation parameters -> Dryer
Dryer waiting time	S*	0-720 min	Operating parameters -> Dryer
Heater 1	No		Operation parameters -> Heater
Heater 1 hysteresis	No		Operation parameters -> Heater
Heater 2	No		Operation parameters -> Heater
Heater 2 temperature offset	No		Operation parameters -> Heater
Heater 2 hysteresis	No		Operation parameters -> Heater
Idle reheating	No		Operation parameters -> Heater
Idle reheating on temperature	No		Operation parameters -> Heater
Idle reheating off temperature	No		Operation parameters -> Heater
Restart after power failure	Yes	On;	Operation parameters -> Auto
		Off	restart
Restart after error	Yes	On;	Operation parameters -> Auto
		Off	restart
Reboot delay	Yes	≥0 s	Operation parameters -> Auto
			restart
Maximum number of restart attempts	Yes	≥1	Operation parameters -> Auto restart
Restore user settings from local copy	Yes		Service and Diagnostics -> Re-
			store and save settings
Restore user settings from external media	Yes		Service and Diagnostics -> Re-
			store and save settings
User password	Yes	1-10 digits	Factory settings -> Passwords
Function and logic of each digital input	No		Input/output configuration -> Di- gital inputs
Function and logic of each digital output	No		Input/output configuration -> Di- gital outputs
Function and range of each analog input	No		Input/output configuration ->
Baud rate	Ves	2400. 4800.	1/0 configuration -> PS-185/DS
Dauu Tale	Tes	2400, 4600, 9600; 19200; 38400; 57600; 115200; 230400	485 ISO
Parity	Yes	None; Even;	I/O configuration -> RS-485/RS- 485 ISO
Stop bits	Yes	1; 1.5; 2	I/O configuration -> RS-485/RS- 485 ISO

Table 18: List of user parameters

Name	Modification	Range	Location	
RS-485/RS-485 ISO function	Yes	None; Super- ior; Subordin- ate	I/O configuration -> RS-485/RS- 485 ISO	
Modbus address	Yes	1-255	I/O configuration -> RS-485/RS- 485 ISO	
IP address assignment	Yes	Auto(DHCP); Static(no DHCP)	I/O configuration -> IP settings	
IP address	Yes		I/O configuration -> IP settings	
Subnet Mask	Yes		I/O configuration -> IP settings	
Gateway	Yes		I/O configuration -> IP settingsP	
Safety valve test ^o	Yes	< 15.5 bar	Diagnostics -> Safety valve test	
Remote mode	Yes	LOCAL; NET; REM; RVM;	Network operation -> Configura- tion	
Communication time limit with master compressor	Yes	≥0 s	Network operation -> Configura- tion	
Operation as master compressor	Yes	Enable; Disable	Network operation -> Configura- tion	
Network operation algorithm	Yes	SEQ; CAS	Network operation -> Configura- tion	
Number of slave compressors	Yes	0-3	Network operation -> Configura- tion	
Switch-on delay between slave com- pressors	Yes	0-60 s	Network operation -> Configura- tion	
Rotation time	Yes	≥ 1 min	Network operation -> Configura- tion	
Relief pressure for master compressor	Yes		Network operation -> Configura- tion	
Load pressure for master compressor	Yes		Network operation -> Configura- tion	
Automatic reconfiguration of pressure limits	Yes	Enable; Disable	Network operation -> Configura- tion	
Network operation point	Yes		Network operation -> Configura- tion	
Pressure relief (slave compressor)	Yes		Network operation -> Com- pressor 1/2/3	
Load pressure (slave compressor)	Yes		Network operation -> Com- pressor 1/2/3	
Interface (slave compressor)	Yes	RS-485; RS- 485 ISO	Network operation -> Com- pressor 1/2/3	
Modbus address (slave compressor)	Yes	1-255	Network operation -> Com- pressor 1/2/3	
Scheduled operation	Yes	Activate; Deactivate	Scheduling operation	
Add event	Yes		Job scheduling -> One-time events/cyclic events	

^F-Parameter available only for compressors equipped with an inverter ^O-Optional parameter

8.1. Change user password

To change the default user password, go to **User parameters->Factory settings->Passwords**, and then enter a value in the "User password" parameter. The password can be from 1 to 10 digits in length.

If you forget the user password, please contact the service.

8.2. User parameter search

The "Search parameter" tab allows you to navigate to a specific parameter or group of parameters by entering its number in the search bar.

Parameter number	Parameter description
1	Scheduling operation
2	Service counters
3	Change language
4 5 26	Configuring network operation
6	Information screen
7 18	Event history
8 25	Input/output configuration
11 12	Date and time settings
15 61	Time parameters
27 28	Network operation settings
30	Dryer parameters
40	Condensate drain parameters
51 52	Display settings
90	Auto restart settings
111	Reset menu
423	Changing user password
500	Safety valve test

Table 19:	List of	user	parameters
-----------	---------	------	------------

9. Operating algorithm

The controller is equipped with several motor control algorithms depending on the type of compressor. The control algorithm is configured according to the compressor's specifications during the production stage. The controller allows for determining the following starting methods:

- Star-Delta
- Modbus inverter
- Direct

The above methods of electric motor control and their operating principles are described in the subsections below.

9.1. Operating algorithm diagram in Star-Delta configuration

Figure 23: Motor control algorithm

The basic operating algorithm of a compressor in a star-delta configuration:

- 1. Start (e.g., pressing the START button)
- 2. Activate the star contactor (start the motor in star configuration)
- 3. Main contactor delay
- 4. Activate the main contactor
- 5. Startup motor acceleration time
- 6. Deactivate the star contactor
- 7. Star-delta switching time
- 8. Activate the delta contactor (start the motor in delta configuration), and start the actual operation
- 9. Compression delay delay in opening the Y valve

- 10. Open the Y valve and then start the compression
- 11. Compression The Y valve is controlled by the operating algorithm according to the required upper and lower pressure settings. Deactivating the Y solenoid valve relieves the compressor, and the motor enters an idle state
- 12. Stop operation (e.g., pressing the **STOP** button)
- 13. Close the Y valve, and go to an idle state
- 14. Stopping motor stopping time
- 15. Deactivate the delta and main contactors
- 16. Restart delay

9.1.1. Compressor operating time parameters

Settings for all times and delays used in the control algorithm can be found in: User parameters -> Operating parameters -> Time parameters.

1/2	Time parameters			
	Motor stop-start delay	10 s	1	I
	Main contactor delay	50 ms	0	I
	Motor acceleration time	6 s	0	
	Y valve on delay	1 s	0	
8.1 bar	Idle time	300 s	0	

Figure 24: View of the menu with time parameter settings for the Star-Delta configuration

Name	Unit	Description
Restart delay	S	The minimum time between compressor shutdown and the next start. If the compressor is restarted before this time elapses, the motor will start with an appropriate delay
Main contactor delay	ms	The time between turning on the main contactor and turning on the star configuration contactor
Motor ramp-up time	S	The time it takes for the electric motor to ramp up. The time it takes to switch from the star configura- tion to the delta configuration
Y-Valve activation delay	S	The waiting time for pressurization, during which the motor is idling
Idle running time	S	The time the motor is idling after exceeding the upper pressure limit
Motor stop time	S	The time the motor is idling after pressing the STOP button

Table 20: List of compressor operating time parameters
Name	Unit	Description
Star-Delta switching Time	ms	The time between turning off the star configura-
		tion contactor and turning on the delta configura-
		tion contactor.
Adaptive idle run		Described in the chapter 9.4.1. Adaptive idle run
(AutoTlse)		(AutoTlse)

 Table 20: List of compressor operating time parameters

9.2. Scheme of the control algorithm in the inverter configuration

Figure 25: Motor control algorithm

The primary algorithm for compressor operation in the Inverter configuration:

- 1. Starting the operation (e.g., pressing the **START** button)
- 2. Startup motor acceleration time
- 3. Compression delay delay in turning on valve Y
- 4. Valve Y activation and then start of compression
- 5. Compression during compression, pressure is controlled by turning valve Y on and off, and motor speed is controlled by the PID algorithm. Turning off solenoid valve Y releases the compressor and puts the motor in idle mode.
- 6. Stopping the operation (e.g., pressing the **STOP** button)
- 7. Delay in deactivating valve Y
- 8. Deactivation of valve Y, transition to idle mode
- 9. Stopping motor stopping time
- 10. Restart delay

9.2.1. Compressor operating time parameters

Settings for all times and delays used in the control algorithm can be found in: User parameters -> Operating parameters -> Time parameters.

1/2	Time parameters		
	Motor stop-start delay	10 s 🥖	
	Main contactor delay	0 s 🖉	
	Motor acceleration time	6s //	
	Y valve on delay	1s 🖉	
8.1 bar	Y valve off delay	0s //	

Figure 26: Menu view with time parameter settings for the Inverter configuration

Name	Unit	Description
Restart delay	S	The minimum time between compressor shutdown and the next start. If the compressor is restarted before this time elapses, the motor will start with an appropriate delay.
Motor acceleration time	S	The time it takes for the electric motor to accelerate. A gradual motor startup procedure (SOFT-START) to the minimum speed.
Y-Valve activation delay	S	The waiting time for pressurization, during which the motor is idling.
Y valve deactivation delay	S	The delay in deactivating Valve Y after pressing the button STOP
Idle running time	S	The time the motor is idling after exceeding the upper pressure limit.
Motor stop time	S	The time it takes for the electric motor to stop. Gradual engine stop procedure (SOFT-STOP)
Adaptive idle run (AutoTlse)		Described in the chapter 9.4.1. Adaptive idle run (AutoTise)

Table 21: List of compressor operating time parameters

9.2.2. PID Controller

The output frequency of the drive motor is controlled by a PID algorithm based on the current and desired pressure values. The controller will aim to maintain the appropriate rotational speed of the compressor shaft to optimize the compression process and reduce electrical energy consumption.

9.2.3. Set pressure

For configurations with a drive motor in the control algorithm, in addition to the lower and upperpressure limits, the set pressure value is also taken into account. This is the so-called PID algorithm control point, which is the desired pressure value in the network, and the algorithm strives to continuously maintain this pressure value through smooth compressor output adjustment.

Its value can be set, along with the other pressure settings, in the section:

User parameters -> Operating parameters -> Network pressure.

The value of this parameter is also displayed on the main screen of the controller. For other control algorithms, such as Star-Delta, this parameter is not visible.

	Pressures		
	Network high pressure warning	10.3 bar 🥻]
	Unload pressure	10.0 bar 🧷	
	Network pressure setpoint	9.1 bar 🧷	
	Load Pressure	8.5 bar 🧳	
8.1 bar	Low network pressure warning	0.0 bar 🧳	

Figure 27: Network pressure settings

9.3. Primary operation algorithm in Direct Start configuration

Figure 28: Motor control algorithm

Primary operation algorithm in Direct Start configuration:

- 1. Starting work (e.g., pressing the START button)
- 2. Main contactor activation
- 3. Motor startup motor ramp-up time
- 4. Compression delay delay in turning on valve Y
- 5. Valve Y activation and the start of compression
- 6. Compression. Valve Y is switched on/off by the operation algorithm according to the required upper and lower pressure limits
- 7. Stopping work (e.g., pressing the STOP button)
- 8. Turning off valve Y, transition to idle mode
- 9. Stopping motor stopping time
- 10. Main contactor deactivation

9.3.1. Compressor operating time parameters

The settings for all times and delays used in the control algorithm can be found in: User parameters -> Operation parameters -> Time parameters.

Figure 29: View of the menu with time parameter settings for Direct Start configuration

Name	Unit	Description
Restart delay	S	The minimum time between compressor shutdown and the next start. If compressor operation re- sumes before this time elapses, the motor will start with the appropriate delay
Motor ramp-up time	S	Time it takes for the electric motor to reach full speed
Y-valve activation delay	S	Waiting time for pressurization, during which the motor is idling
Idle run time	S	Time of free operation after exceeding the upper pressure limit

Table 22: List of time parameters for compressor operation

Name	Unit	Description
Motor stopping time	S	Time of free operation after pressing the STOP button
Adaptive idle run (AutoTlse)		Described in the chapter 9.4.1. Adaptive idle run (AutoTise)

9.4. Idle run

The idle run of the compressor is a part of every operating mode provided in the controller. It is accomplished by closing the Y-valve and keeping the motor running. This allows the machine to quickly return to the air compression state in case of pressure drop, without the need for a full motor restart.

The idle run time can be defined by going to the tab:

User parameters -> Operating parameters -> Time parameters -> Idle run time.

The available range for idle run time setting depends on the specific compressor model. When the idle run time ends the motor is stopped.

9.4.1. Adaptive idle run (AutoTlse)

Optimally setting the idle run time is crucial for economic reasons. A time set too long results in unnecessary idle running of the engine, leading to increased electrical energy consumption. Conversely, setting a short idle run time can lead to frequent compressor start and stop cycles, causing an increase in electrical energy consumption and reducing the mechanical components' lifespan. Utilizing the algorithm allows for automatic control of the engine's idle run time in the automatic compressor operation mode. The system continuously analyzes the historical and current tank pressure value, taking into account the following parameters:

- pressure monotonicity,
- pressure rise/fall rate,
- · reference pressure values to upper and lower limits,
- pressure rise/fall times in previous compressor start/stop cycles,
- set idle run time,
- estimated number of compressors starts per hour.

Based on the gathered information, the function **AutoTise** scontrols the idle run time mainly by reducing it, ensuring that it is never shorter than the minimum idle run time set in the time parameters in the controller's factory settings. If there is little demand for pressure in the network during idle operation and the pressure decreases slowly or not at all, the algorithm accelerates the compressor's shutdown. If there is an anticipated need to restart the compressor shortly after the motor is turned off, the compressor remains in idle run mode.

The Adaptive idle run function can be used both on standalone compressors and compressors in a network.

To enable this function **AutoTise** go to the **User parameters screen -> Work parameters -> Time parameters** and set the "Adaptive idle run" parameter to "Enable."

9.5. Decompression control method

The controller can control decompression using several methods, including a suction sensor, time delay, or oil pressure sensor.

10. ULTRA SPEED function

A standard compressor equipped with an inverter regulates the rotation of the drive motor as a function of pressure. The controller transmits the reference frequency to the inverter, which matches the output frequency to it. The power on the motor shaft then increases as the pressure increases, while the compressor capacity remains constant.

In this case, the rotational speed is included within the limits between the minimum frequency setpoint (for discharge pressure above the set pressure) and the maximum setpoint on the compressor controller (for pressures below the set pressure).

The ULTRA SPEED function is an additional PID controller, which is designed to increase the output frequency of the inverter in the range from the maximum frequency set on the controller to the maximum frequency of the ULTRA SPEED function related to the construction of the compression stage and the drive motor (additionally limited by the internal parameters of the inverter). The controller is designed to keep the currently consumed power as close as possible to the rated value of the motor. This translates into an increase in speed and thus efficiency when operating the compressor at pressures lower than nominal and has a positive impact on electricity savings. The ULTRA SPEED function is particularly useful in moments of excessive demand for compressed air.

11. Compressor and controller operation settings

Compressor operation mode settings can be found in the **User Parameters -> Operation Parameters -> Operating Modes** tab. The operation mode settings are divided into 2 independent groups: Operation mode and Remote mode. The first one defines the compressor's operation algorithm, the second one defines the way the compressor is controlled.

11.1. Operation modes

Available operation modes:

- AUTO
- CONST

11.1.1. Automatic mode (AUTO)

The automatic operating mode involves the compressor starting and stopping automatically when predefined load and unload pressure values are reached. To initiate automatic operation, press the green START button.

When the network pressure reaches the maximum set value, the compressor will enter an idle state. If the network pressure falls below the minimum set value before the idle time elapses, the compressor will resume loading. If the idle time ends, and the network pressure falls within the set pressure range, the engine will be stopped. The compressor will automatically restart when the pressure drops below the minimum pressure value. To disable automatic operation, press the red STOP button.

During automatic operation, it is possible to force the transition from the idle state to the loading state before the load pressure is reached by pressing the START button, provided the current network pressure is lower than the unload pressure.

11.1.2. Continuous mode (CONST)

The continuous operation mode keeps the compressor motor in a continuous state of operation. This is done through infinite idling time. To start the continuous mode, press the green START button. When the network pressure reaches the setpoint (max.), the compressor will idle until the network pressure falls below the setpoint (min.), after which it will start compressing again. When the compressor is started with the START button and the network pressure is within the set pressure, the motor will not start. The motor will be started for the first time when the pressure drops below the minimum value. Press the red stop button to deactivate the continuous operation mode. During continuous operation, it is possible to force the transition from idle run to the compression state before the load pressure is reached by pressing the START button, provided that the current network pressure is lower than the offload pressure.

11.2. Remote modes

Available remote modes:

- LOCAL
- NET
- REM
- RVM

11.2.1. Local control mode (LOCAL)

In local control mode, the compressor operates according to pressures set on the controller (minimum and maximum). The compressor is controlled by the START and STOP buttons, and its operation is governed by internal algorithms of the controller, depending on the selected operation mode.

11.2.2. Network mode NET

In network operation mode, the compressor operates according to the pressure settings provided by the master controller via Modbus RTU. The NET mode is dedicated to the operation of the compressor as a slave. The master controller is responsible for starting the operation of the compressor, you do not have to press the START button.

11.2.3. Remote control mode REM

In REM remote control mode, the compressor does not control the network pressure setting. It is done through a digital input configured as "Remote load - unload signal". Pressure control is carried out externally, e.g. via the master controller.

When the load signal appears on the controller's digital input, the compressor will behave in the same way as if the pressure dropped below the setpoint (min.). When the signal on the digital input is changed to unload, the compressor will behave as if the upper limit of the set pressure (max.) was exceeded.

Apart from the above mentioned differences, the operation of the compressor control algorithm is carried out according to the selected operating mode. When the REM remote control mode is selected in the main interface view, pressure ranges will be replaced by an "External pressure control" message. Despite the lack of supervision over the set pressure in the network, the controller continuously controls the pressure limits set by the compressor manufacturer. If the measured pressure in the network exceeds the maximum pressure value, the compressor will be stopped.

Note!

To start the compressor in the REM remote control mode, press the START button on the controller.

11.2.4. REM remote control mode configuration

To configure remote control in REM mode, set the "Remote mode" parameter to "REM" (User parameters-> Operation parameters-> Operation modes -> Remote mode). In order to enable remote control in REM mode, one of the digital inputs of the controller should be assigned the function "Load-relief remote signal". To verify, go to the digital input configuration parameters (User parameters-> Configure inputs/outputs -> Digital inputs). If none of the digital inputs is configured as "Remote load - relief signal", please contact the

11.2.5. RVM remote control mode

In REM remote control mode, the compressor does not control the network pressure setting. It is done through a digital input configured as "Remote load - unload signal". Pressure control is carried out externally, e.g. via the master controller.

When the load signal appears on the controller's digital input, the compressor will behave in the same way as if the pressure dropped below the setpoint (min.). When the signal on the digital input is changed to unload, the compressor will behave as if the upper limit of the set pressure (max.) was exceeded.

Apart from the above mentioned differences, the operation of the compressor control algorithm is carried out according to the selected operating mode. When the REM remote control mode is selected in the main interface view, pressure ranges will be replaced by an "External pressure control" message. Despite the lack of supervision over the set pressure in the network, the controller continuously controls the pressure limits set by the compressor manufacturer. If the measured pressure in the network exceeds the maximum pressure value, the compressor will be stopped.

Note!

To start the compressor in the REM remote control mode, press the START button on the controller.

11.2.6. RVM remote control mode configuration

To configure remote control in RVM mode, set the "Remote mode" parameter to "RVM" (User parameters-> Operation parameters-> Operation modes -> Remote mode).

11.2.7. Remote start function

The remote compressor start function allows the user to control the compressor using digital input. Remote control operates to pressing the START or STOP button was pressed on the controller. **Note!**

The START and STOP buttons override the remote start function, which means that pressing the START button is necessary to grant permission to remote start. If all remote start conditions are met the compressor will start. Whereas, if there are any issues with input signal, the message "Waiting for remote start signal" will be displayed in the text message. Pressing the stop button cancels the start permission until the START button is pressed again.

11.2.8. Remote start configuration

The configuration of remote start is done by assigning the "Remote start-stop" function to one of the digital inputs of the controller. In order to verify which input is assigned to above mentioned function, go to the digital input configuration parameters (**User parameters-> Input/output configuration - >Digital inputs**). If none of the digital inputs is configured as "Remote start-stop", please contact the

11.2.9. Differences between REM and RVM remote modes and the remote start function

Remote REM/RVM is a special controller mode which controls network pressure externally. In RE-M/RVM mode, the controller operates based on an external load and relief signal that replaces pressure settings. This mode is dedicated to master control, in which the master controller is responsible for controlling network pressure.

The remote start function as opposed to the remote REM/RVM mode is only a signal that can be assigned to one of the digital controller inputs. It does not affect the control algorithm. The compressor will operate according to the selected operating modes. The remote start function is an additional condition that must be met for the compressor to start. This function allows, for example, to assign an a compressor start-stop switch to an external operator panel. It can also be used to run simple algorithms in master operation.

12. Other functions

12.1. Fan function (compressor cooling)

The fan function is dependant on the oil temperature measurement and allows the oil temperature to be kept in the optimum range. The fan turns on and off at specified oil temperature levels. This function is only active when the START button is pressed.

The parameters of the fan function can be found in the **User parameters tab -> Operation parameters ers -> Fan**. Modification of these parameters requires service level authorization.

The fan will stop when the motor is stopped using the stop button or an error occurs when the fan is on. However, if the motor stops during a standard work cycle, the fan will not be turned off, until the oil temperature drops below the fan shutdown temperature. **Note!**

In order for the fan function to work correctly, one of the digital outputs must be assigned the "Fan" function

12.2. Dryer function

The dryer function allows you to control the dryer using one of the digital (relay) controller outputs. There are 2 independent dryer modes: Standard and pulsating.

In standard mode, the dryer is switched on during motor operation, and it is also possible to configure the drying time before starting and after finishing operation.

It is also possible to configure the dryer's operation so that the dryer runs all the time when the compressor is in standby or running condition. This configuration allows the dryer to run continuously even when the set pressure is reached.

The pulse mode consists in switching the dryer on and off cyclically in order to maintain the relevant parameters. The pulse mode starts only when the machine motor is stopped when idling time elapses after the set pressure is reached. The dryer will go into pulsed mode (if configured) when the standard operation mode is complete.

When the dryer function is enabled, the user is informed about the remaining time of the dryer operation in the main view of the controller.

The dryer configuration requires service authorization, to view the current configuration go to the tab **User parameters -> Operation parameters -> Dryer**.

Note!

In order for the dryer function to work correctly, one of the digital outputs must be assigned the "Dryer" function

12.3. Condensate drain function

The controller has a built-in condensate drain valve operation function. The valve is opened using one of the digital (relay) outputs of the controller, the time interval and the operating time are defined by the user.

12.3.1. Condensate drain function configuration

In order to configure the condensate drain function, go to the **User parameters tab -> Operation parameters -> Condensate drain**. The "Condensate drain function" parameter allows the user to

enable or disable the function.

The "Valve open period" parameter specifies the time interval in minutes between successive valve openings. The maximum value that can be set is 720 minutes.

The "Valve open time" parameter determines the time in seconds during which the drain valve will be opened. The maximum value that can be set is 600 seconds.

Note!

In order for the Condensate drain function to work correctly, one of the digital outputs must be assigned the "Condensate drain" function

12.4. Auto restart function

The auto restart function allows the compressor to resume automatically when a power failure or error occurs. Not all errors allow auto restart. The full list of errors divided into those allowing and preventing auto restart, can be found in the "Warnings and errors" section.

The automatic compressor restart function in the event of an error that allows for an auto restart requires the user to confirm the error and to start the compressor. In the event of failure (if it is not possible to confirm the error), the controller will make further attempts at auto restart (the number of attempts and the time interval between attempts are defined by the user).

The procedure for automatic compressor restart in the event of a power failure works in the same way as described above, with the difference that it initiates only after a power failure.

The user is informed about the ongoing auto restart procedure by through a message displayed in the main controller view in the message field.

If the auto restart fails, the function will be reset after the compressor is started manually.

12.4.1. Auto restart function configuration

To configure the auto restart function, go to the **User parameters tab -> Operation parameters -> Auto restart**. The "Restart after power failure" and "Restart after error" parameters allow the user to select the function range. One or both can be enabled at the same time.

The "Restart delay" parameter allows the user to determine the time in seconds the controller will wait before proceeding to the automatic restart procedure. At the same time, it is also the time interval that the controller will wait between subsequent auto restart attempts.

The "Maximum number of restart attempts" parameter determines the number of auto restart attempts that the controller will make.

12.5. Heater function

The heater function allows the user to start the oil heater using one of the digital (relay) controller outputs. It is also possible to prevent excessive oil cooling by using idle. The controller provides the possibility of oil heating in 3 independent modes.

The user can view the settings of the heater parameters in the **User parameter tabs -> Operation parameters -> Heater**. Their modification requires service authorizations.

12.5.1. Heater 1

The function of heater 1 starts when the motor starts and the oil temperature is lower than the minimum starting oil temperature foreseen by the compressor manufacturer. A message informing about the operation of the heater will be visible in the main view of the controller. The start-up will take place when the oil temperature reaches the minimum value for start-up + heater 1 hysteresis value.

Note!

In order for the heater 1 function to work correctly, the "Heater 1" function must be assigned to one of the digital outputs

12.5.2. Heater 2

The function of heater 2 allows the oil temperature to be maintained in a range that allows the motor to start immediately, regardless of the compressor operation algorithm. This means that the heater will start when the compressor is stopped in order to maintain the oil temperature within the specified temperature range.

Note!

In order for the heater 2 function to work correctly, the "Heater 2" function must be assigned to one of the digital outputs

12.5.3. Idle heating

The idle heating function consists in using the idle speed of the compressor in order to prevent the oil temperature from falling below the minimum temperature for start-up. Idle heating starts only when the compressor is able to reach the set pressure. This means that this function will not work if the compressor is stopped.

The user is informed about the activation of the idle heating function through a message in the main view of the controller.

12.6. Restoring and saving settings

The controller can save and restore settings from a local copy or an external data carrier. From the user access level, it is only possible to restore user settings in the controller. Service authorizations are required to save or restore the settings of service parameters.

The option of restoring and saving settings on external data carriers allows you to copy settings between controllers.

To restore or save the settings, go to the tab:

User parameters -> Diagnostics and service -> Restore and save settings.

The user can restore the settings from a local copy saved in the controller's memory or from an external data carrier connected to one of the controller's USB ports. The scope of restored settings includes only user parameters. To restore the service settings, logging in from the service technician level is required. Restoring compressor settings overwrites the data and will not be able to be restored. After selecting the recovery source, you must confirm the warning.

13. Diagnostic Functions

To use the diagnostic functions of the controller, go to the **Service parameters -> Diagnostics and service** tab.

13.1. Input/output diagnostics

The "Input/output diagnostics" tab shows the status of each input and digital and analog outputs, as well as several additional parameters.

At the top of the tab you will find a list of inputs and digital outputs.

List of diagnostic parameters:

- Logical state of digital inputs (high/low)
- Digital output staus (closed/open)
- Measured value of RTD inputs
- Measured value of AI inputs
- Measured value of MC1 input (transformer secondary winding current)
- Controller battery voltage
- Controller power supply voltage
- Controller 24VDC internal voltage

13.2. Safety valve test

Safety valve testing may only be performed by authorized persons

Carrying out the safety valve test involves setting the target pressure and pressing the "Start test" button. This will start the compressor, which will compress the air until the set limit is reached.

Figure 30: View of the controller screen in the manual control tab of the Y valve

Note that the controller at this point ignores all pressure limits and compresses to the pressure set in the "Target pressure" field. In order for the safety valve to open, the set pressure limit should be higher than the valve operating level. Before starting the test, read the information displayed on the controller screen.

Figure 31: Safety valve test start warning

14. Service counters

Service counters are designed to remind you of the need to carry out specific service activities. Each meter has 2 operating modes, counting down the remaining operating hours of the compressor or counting down the time to a specific date. Both modes are independent, only one or two of them can be active simultaneously. The remaining operating hours are counted only during motor operation, the hours are not counted when the compressor is switched off or is in an idle mode. The countdown to a specific date takes place independently of the compressor operation. The controller has 9 independent service counters:

- General service counter
- Oil change counter
- Oil filter counter
- Air filter counter
- Separator counter
- Drive belt counter
- Motor bearing lubrication counter
- General purpose counter 1
- General purpose counter 2

In the case of direct drive compressors, the drive belt counter is not available. It is replaced by general purpose counter 3.

Figure 32: The "Service counters" tab"

Each counter is displayed in the form of a tile with the name of the counter. The counter status is visible to the right of its name. If the counter is active, depending on the operating mode of the counter, the date of the next inspection or the number of operating hours remaining to the inspection or both are displayed at the same time. If the counter is inactive, the information "off" is displayed next to it. If any of the active counters counts down the hours to 0, or reaches the service due date, a warning will appear on the controller with information referring to the meter that needs attention, e.g., "Change oil"

14.1. Restarting service counters

O restart service counters select the tile of one of the counters and then select "Reset" in the "Reset Service" parameter. Before the restart occurs, a confirmation will be displayed showing the with values

to which the counter will be restarted. Service intervals are assigned by the service or compressor manufacturer.

Resetting the service counter requires the user or service password.

15. Statistics

The controller records sensor measurements and information on compressor operation and presents them in the form of statistics related to the time and compressor cycles. The types of load data are different for star-delta start and inverter compressors.

In the "Statistics" tab, which is located in the main menu, data is presented in the form of rows with parameter descriptions and values. The pencil symbol next to the selected line means that it is possible to manually enter the values of the selected parameters, authorization from the service level is required in this case.

Parameter name	Parameter description
Total operating time	Total motor operating time.
Operating time under load	Total compression time.
Average load	Ratio of running time under load to total running time
Number of motor starts	Total number of motor starts
Average number of motor	Average number of motor starts per hour
starts	
Number of Y-valve engage-	Total number of Y-valve engagements
ments	
Load 80% - 100% ^F	Total operating time per load interval
Load 60% - 80% ^F	Total operating time per load interval
Load 40% - 60% ^F	Total operating time per load interval
Load 20% - 40% ^F	Total operating time per load interval

Table 23.	Parameters	from th	י שר	tatistics"	tah
Table 23.	r ai ai i e le i s	nomu	16 3	lausuus	ເລນ

F-Parameter available only for compressors equipped with an inverter

Figure 33: Statistics tab

16. Operation scheduling

The controller is equipped with a compressor scheduling function. This allows the machine to automatically turn on and off according to a pre-planned schedule. It is possible to save a total of up to 5 independent one-time or cyclic events.

One-time events are defined by specific dates and times, while recurring events are set up by hours for each day of the week.

The operation scheduling menu is located in the main menu and in the user parameters, under the name "Operation scheduling". The user or service password is required when entering the menu through the main menu.

When you enter the work scheduling menu, the first position is the parameter "ON", "OFF" allowing you to enable or disable the operation of the controller according to the active events, which are shown below in the menu.

Each of the configured events is presented in the form of a field from which you can read basic information about the event, such as the time interval of the event, operation mode, and the status of the event (activated or deactivated). If the field displays the message "Create event", this means that no event has yet been assigned to the field.

Figure 34: The main view of the "Operation scheduling" menu.

16.1. Event Configuration

Each event is configured with the following parameters:

- Event status
- Event type
- Operation mode
- · Activity date of the event

	Event 2		
	Event status	Activated	0
	Event type	Recurring	0
	Operating mode	CONST	0
Activity date Mo,Tu,We,Th,Fr 1 8.1 bar DELETE EVENT	Activity date Mo,Tu,We,Th,Fr 18:00 - 24:00		0
	DELETE EVENT	SAVE EVE	т

Figure 35: Example of configuration of scheduled operation event

The "Event status" parameter allows you to activate or deactivate the event. If an event is deactivated, It will not affect scheduled work, but will remain in the event list.

The "Event type" parameter defines whether the event is cyclic or one-time.

The "Operation mode" parameter defines the operation mode in which the compressor will operate during the event. In addition to the standard operating modes (AUTO and CONST), you can also select the "STOP - compressor stopped" operating mode.

The last parameter of the event configuration is the "Event activity term" parameter, which defines the period, during which the event is to be active.

Depending on the selected type of event, its activity period is defined through a different set of parameters.

Cyclic events are parameterized by the "Days of the week", "Start time" and "End time" parameters, while for one-time events these are "Start date", "Start time", "End date", "End time".

	Event 3 activity date								
	Start day	25.05.2024	0						
	Start time	07:00	0						
	End day	27.05.2024	0						
(])	End time	16:00	0						
8.1 bar									

Figure 36: Example of event activity date configuration

After entering all the parameters of the event, switch to the "Save Event" field and save the parameters with the OK button.

The "Delete event" field allows you to remove the event from the list.

16.2. Work scheduling algorithm

In order for the compressor to operate according to the configured events, the scheduled operation must be activated in the "Operation scheduling" menu. When the scheduled operation is active, the screen will display the message "Scheduled operation is active".

In addition, in order for the operation scheduling algorithm to control the compressor, it is necessary to allow the compressor to start in advance by pressing the "START" button on the controller. If, according to the scheduled events, the compressor is not work at the moment, after allowing the start, the main view of the graphic interface will display the message "Stopped by scheduled operation". The scheduled operation algorithm only takes into account events that are activated.

NOTE!

One-time events have a higher priority than cyclic events. This allows you to make "exceptions" for cyclic events, such as for public holidays.. At the same time, events that are at a higher position on the list have a higher priority than those at lower positions on the list. This means that when two or more scheduled events overlap in time, the compressor will run according to the event with higher priority.

17. Network operation

The controller can manage a group of up to 4 compressors (including itself) as the master controller, using one of two available algorithms: Sequential (**SEQ**) or cascading (**CAS**). All controllers in the network must be connected to each other via RS-485 or RS-485 ISO ports. The

All controllers in the network must be connected to each other via RS-485 or RS-485 ISO ports. The communication protocol used for network operation is Modbus RTU.

17.1. Network operation view

The network operation view is only available in a master controller. To enable the network operation view, go to the tab **Network operation** in the main menu or the main view shortcuts. From the master controller, the user gains access to a preview of the status of all controllers in the network.

The network operation view shows all connected slave controllers (marked with numbers from 1 to 3) and the master controller (marked with the letter "M").

The number of visible slave compressors depends on the number of compressors configured in the master controller. Each of the tiles in the network operation view allows the user to read the current pressure settings on each of the compressors and the status of each of the compressors in the form of a short message. In the event of an error or warning on any of the compressors in the network, an error or warning icon will be displayed in its tile field.

••••
Network

M
Stopped

Pd:
8.5 bar

1
Stopped

Pu:
10.0

Pd:
8.5 bar

2
Communication error

2
Communication error

Pd:
8.5 bar

7.4
••••

bar
••••

Network operation is disabled

It is not possible to display the network operation view from the level of the slave controller.

Figure 37: Network operation view

17.2. Starting network operation and changing the settings of the slave controllers

To enable the network operation algorithm, go to the network operation view on the master controller, and then enable it with the button ON/OFF next to the text "Network operation is: OFF". When the algorithm is turned on, the inscription will change to "Network operation is: ON". In order for the master controller to properly manage the compressor unit the START button on each of the slave compressors must be pressed before starting network operation on the master compressor (This does not apply to previous generations of MS series controllers. These will turn on automatically).. Disabling the network operation algorithm will stop all slave compressors if the STOP button has not been pressed on the slave compressors in the meantime, restarting slave compressors only requires

re-activating the start button of the network operation algorithm in the network operation view on the master controller.

To configure the pressure on any of the controllers in the network, select its tile and then enter the appropriate pressure values.

17.3. Errors and events in network operation

If an error occurs in the compressor or in one of the slave compressors, it will be automatically disabled from operation in the master control algorithm. Restoring such a compressor to operation in the algorithm will be only possible when the fault is removed and the error is confirmed on its controller. If an error occurs in the master controller, it will be excluded from the master operation algorithm, however, it will still control the operation of slave compressors.

If the connection to one or more of the slave controllers is interrupted, the status window of the slave compressor will display the message "Communication error". Such a compressor will be excluded from the master operation algorithm, however, if there are no additional errors in the slave compressor, this compressor will operate according to the last pressure settings received from the master controller. This also means that in the event of a loss of communication with the master controller network, the remaining compressors will not shut down, but will operate in accordance with the last pressure settings received.

17.4. Sequential operation algorithm (SEQ)

The sequential algorithm is designed for network operation of a group of compressors of similar power. The assumption of the algorithm is to evenly distribute the run time between all compressors in the network. This is done by rotating the load pressure (Pd) and relief pressure (Pu) settings by a specified rotation time, which can be configured by going to the **User Parameters tab -> Network operation -> Configuration**.

During the rotation phase, individual compressors do not stop. The compressor may be stopped/started only as a result of the reference of the current pressure in relation to its newly set Pu - Pd limits. Only active compressors are involved in the pressure rotation procedure.

Exclusionary, step intervals are an example, recommended setting of Pu - Pd pressure limits in the sequential algorithm. With such a distribution, the compressor with the highest limit range will be switched off at the last (when the required network pressure is reached) and switched on as the first, because it has the highest lower Pd pressure limit.

The second example of Pu - Pd limit settings in the sequential algorithm is to give the compressors identical upper Pu limits and lower step limits. In this situation, all compressors will be switched off at the same time, and switched on at pressure drops below the subsequent lower Pd limits.

Bet	fore r	otation	After first rotation		Aft	After second rotation			
ID	Pd	Pu	ID	Pd	Pu	ID	Pd	Pu	
1	6.0	7.0	1	3.0	7.0	1	4.0	7.0	
2	5.0	7.0	2	6.0	7.0	2	3.0	7.0	
3	4.0	7.0	3	5.0	7.0	3	6.0	7.0	
4	3.0	7.0	4	4.0	7.0	4	5.0	7.0	

Compressors stopped manually or as a result of a critical error are automatically given the lowest pressure limits (with the automatic reconfiguration function turned on), and their limits are transferred to active compressors with the lowest Pu - Pd limits. For example, if in the first instance the compressor with ID 2 is stopped manually, then after reconfiguration, the distribution of boundaries will look like in the second instance. If the compressor with ID 2 is still inactive during the rotation procedure, the pressure distribution will look like in the third instance.

17.5. Cascading algorithm (CAS)

The cascade operation algorithm is designed for network operation of a group of compressors of different power capacities. This algorithm assumes that the compressor with the lowest power will be switched on and off most often. The compressor with the highest power will be started only in cases of high demand for air in the network.

An example, recommended setting of Pu - Pd limits in the cascade algorithm is to give the compressors identical upper Pu limits and lower step limits (instance 1). In this situation, all machines will compress air until the required network pressure is reached, and then they will be switched off at the same time. With a low pressure demand, the compressor with the lowest power (ID=4) will be switched on. If, despite its operation, the pressure falls below the lower limit of the compressor with ID=3, this compressor will also be switched on.

1. All active			2. (Comp	resso	or ID=2 not active		
	D	Pd	Pu	Power	ID	Pd	Pu	Мос
1	-	3.0	7.0	120kW	1	4.0	7.0	120kW
2	2	4.0	7.0	100kW	2	3.0	7.0	100kW
3	3	5.0	7.0	50kW	3	5.0	7.0	50kW
4	ŀ	6.0	7.0	20kW	4	6.0	7.0	20kW

In the cascade algorithm, the Pu - Pd pressure limits are permanently assigned to a given compressor identifier. There is no rotation procedure (the rotation time parameter is not taken into account). Thus, when setting pressure limits, their order relative to ID is important. With the automatic reconfiguration function enabled, compressors stopped manually or as a result of an error are automatically assigned the lowest Pu - Pd pressure limits in the network. This shifts the lower limits up one position. For example, if in instance 1 a critical error occurs in the compressor with ID=2, then after automatic reconfiguration, the distribution of Pu - Pd pressure limits will look like in instance 2. When the compressor with ID=2 is restored to operation, the boundary distribution will return to instance 1.

17.6. Master controller configuration

In order to configure the master controller for network operation, the communication parameters of the RS-485 port must first be configured. There are 2 independent RS-485 ports available in the controller, one of them is isolated (RS-485 ISO). Any of the ports can be used for controller network operation.

To configure the parameters of the selected RS-485 port, go to the **User parameters tab -> Configuration of inputs/outputs -> RS-485/RS-485 ISO**.

Communication parameters: The band rate, parity, and stop bits should be configured the same for all devices in the network.

For long distances between controllers, it is recommended to set lower band rates.

The "RS-485 function" parameter must be set to "Master".

	RS-485		
	Baud rate	9600	1
	Parity	Even	0
	Stop bits	1	0
(])	Function	Master	0
8.1 bar			

Figure 38: The RS-485 port configuration menu

In the next step, configure the network operation parameters. To do this, go to the User parameters tab -> Network operation -> Configuration. The "Operate as master compressor" parameter should be set to "Enable", this will automatically set the "Remote mode" parameter to "NET".

In the remaining parameters, select the number of slave compressors (excluding the master compressor), the operation algorithm of the master control (sequential or cascading).

The parameter "Switching delay between slave compressors" determines the delay of starting subsequent compressors in the network and aims to protect the power network from overloading as a result of starting too many compressors at once.

The parameter "Rotation time" applies only to the sequential mode and determines the interval in which the pressure settings will be changed between successive compressors.

The "Master compressor load/relief pressure" parameters determine the pressure settings for the master compressor.

The "Automatic reconfiguration of pressure limits" parameter, if enabled, is responsible for transferring the pressure settings from the compressor in which the failure occurred to the compressor that is operating correctly.

In the case of network operation involving compressors equipped with an inverter, the operating point is common to all compressors in the network, it is configured in the "Network operation point" parameter. This setting is sent to all slave compressors equipped with an inverter.

Network setup	
Remote mode	LOCAL
Master compressor communication timeout	15 s 🖉
Operate as master compressor	OFF
Network operation algorithm	SEQ 🖉
Number of slave compressors	3 🖉
	Network setupRemote modeMaster compressor communication timeoutOperate as master compressorNetwork operation algorithmNumber of slave compressors

Figure 39: Network operation configuration menu 1/3

Figure 40: Network operation configuration menu 2/3

Figure 41: Network operation configuration menu 3/3

The last step in the parameterization of the master controller is the configuration of each of the slave compressors. The sub-compressor configuration tabs are available in **User parameters -> Network operation -> Compressor**. The number of compressors that can be configured depends on the number of slave compressors entered. Each of the slave compressors is configured in the same way by entering the pressure settings of the selected compressor in the "Relief pressure" and "Load pressure" parameters.

In the "Interface" parameter, select which RS-485 port of the master controller the slave compressor is connected to ("RS-485" or "RS-485 ISO")..

The "Modbus address" parameter specifies the modbus address that was assigned to a given slave compressor, it should be rewritten from the slave compressor controller after its configuration. **Note!**

NOLE!

Controller addresses within a single network may not be duplicated. Each of the slave compressors should have a different address.

	Network operation			
	Configuration			
	Compressor 1			
	Compressor 2			
	Compressor 3			
8.1 bar				

Figure 42: Network operation menu

	Slave compressor 1 configuration		
	Unload pressure	10.0 bar 💋	
	Load pressure	8.5 bar 🧷	
	Interface	RS-485 🧷	
	Modbus address	2 🖉	
8.1 bar			

Figure 43: Slave compressor 1 configuration menu

17.7. Slave controller configuration

In order to configure each of the slave controllers, first configure the RS-485 port to which the network is connected. Go to the **User parameters tab -> Configuration of inputs/outputs -> RS-485/RS-485 ISO.**

The communication parameters of the selected RS-485 port, i.e. "Bitrate", "Parity" and "Stop bits", must be configured in the same way as on the master controller.

Select "Slave" in the "RS-485/RS-485 ISO function" parameter

Enter any address that will coincide with the selected slave compressor configured in the master controller in the "Modbus address" parameter.

Note!

Controller addresses within a single network may not be duplicated. Each of the slave compressors should have a different address.

The whole process must be repeated on each of the slave compressors.

	RS-485		
	Baud rate	9600	Ø
	Parity	Even	0
	Stop bits	1	0
(])	Function	Master	0
8.1 bar			

Figure 44: The RS-485 port configuration menu

The last step in the configuration of the slave compressor is to change the remote mode to "NET". To make a change, go to the **User parameters tab -> Operation parameters -> Operation modes**.

	Operating modes			
	Operating mode	AUTO 💋		
	Remote mode	LOCAL /		
8.1 bar				

Figure 45: Remote mode setup menu

18. Web server (Visualization system)

The controller is equipped as standard with a visualization system (web server), enabling real-time monitoring of the compressor via the local LAN.

The web server is presented in the form of a website. The website is hosted directly from the controller on the local network, which does not require the installation of any software. For correct operation a web browser on a computer with access to the LAN to which the controller is connected will suffice It is possible to browse the web server page by several users at the same time, on several computers.

The web server does not have the ability to remotely change the controller parameters.

18.1. Web server - description of the graphical user interface

The web server is divided into many subpages corresponding to individual tabs in the controller. Many of them are extended on the web server.

Regardless of the content of the subpage that the user is currently browsing, the navigation bar on the web server and the top bar are always visible.

The side navigation bar allows the user to go to any subpage of the visualization system, and indicates which subpage the user is currently viewing.

List of subpages of the web server:

- Desktop
- Sensors
- Consumption
- Messages
- Service counters
- Scheduled operation
- Information

Figure 46: Web server navigation sidebar

The top bar allows the user to view the basic parameters of the compressor regardless of the subpage the user is viewing.

List of parameters visible in the top bar:

- Compressor name
- Current pressure
- Abbreviated compressor status
- Fan operation icon
- · Motor icon that changes colours in the same way as on the controller
- Date and time from controller

7.5 bar Stopped 🕑 09:58 05.07.2024

18.2. Web server - Desktop

The "Desktop" subpage " is the default view of the web server. It shows all the most important compressor parameters.

List of parameters visible on the Dashboard subpage

- Pressure
- Current pressure settings
- Motor frequency
- Oil temperature
- Compressor status
- Motor status
- Operation mode
- List of active messages
- Network operation icon
- Scheduled operation icon
- Fan operation icon
- Dryer operation icon
- Heater operation icon
- Condensate drain icon
- Compressor and controller basic information

		7.5 bar Stopped () 09.59 05.07.2024
🖵 Desktop	DESKTOP	
Sensors	Network pressure Pressure settings Compressor status	Network operation Planned operation
Lis Consumption	7.5 bar Steport 0.0 bar Load pressure 0.0 bar	
🔄 Messages		Master disabled Disabled
Service counters	Deactivated	DOD Fan Drym
Planned operation		6 DISABLED NOT AVAILABLE
Hetwork operation	Automatic mode Motor stopped	Condensate drain Mot Available Not Available
O Information		
	Active messages	Serial plate
Cute How Status Mossage		Software version v385 Controller avrial number Controller model
		Comparison samid number Comparison same Etantag method Kanufacteur

Figure 48: Web server dashboard view

18.3. Web server - Sensors

The "Sensors" subpage corresponds to the "Sensors" tab in the controller. Only values of the sensors configured in the controller are displayed in it.

List of sensors available for viewing on the "Sensors" subpage:

- Network pressure
- Oil pressure
- Oil temperature
- Motor temperature
- Motor current
- Motor power
- Output frequency

18.4. Web server - Consumption

The "Consumption" subpage presents time statistics from the controller, extending them with a circular diagram of the load and relief work distribution, or in the case of compressors equipped with an inverter, a bar graph showing the work distribution over individual load ranges.

18.5. Web server - Messages

The "Messages" subpage allows the user to view the history of messages (Errors and Warnings) that have occurred in the controller in the past or are active at a given moment. Active messages are highlighted with a blue flag symbol. The web server allows the user to filter events in the list by type (error, warning, active, inactive) or by date. It is also possible to search for events by name.

18.6. Web server - Service counters

The "Service counters" subpage shows the service counters active in the controller and their values. Additionally, the progress bar of each meter is also displayed. The progress bar shows 100% in the case of a reset counter, this value decreases with run time / when the date of the next inspection approaches.

18.7. Web server - Scheduled operation

The "Scheduled operation" subpage presents all events configured in the controller with their parameters and status, divided into one-off and cyclic events.

18.8. Web server - Information

The "Information" subpage duplicates the information from the "Information" tab in the controller.

18.9. Initiating and configuring connection with the web server

In order to configure the web server, go to the **User parameters tab -> Configure inputs/outputs** -> **IP settings**. Next, select from the list how the IP address will be assigned to the controller in the local network. The avilable modes are auto (DHCP) and static.

In the automatic mode, the IP address will be assigned automatically via the DHCP server running on the network (this depends on the individual configuration of the local network).

In the static mode, the user can configure the standard parameters of the network device.

List of parameters that can be configured in static mode:

- IP address
- Subnet mask
- Gateway

Note!

After each change press the "SAVE" button, otherwise the parameters will not be saved.

	IP settings				
	Assigning an IP address	Auto (DHCP) 🥖			
	Confirm changes	Save			
	Assigned IP address	0.0.0.0			
8.1 bar					

Figure 49: IP address configuration menu

To check the assigned IP address, go to the "Information" tab available from the main menu of the controller. The MAC address of the device is also available there.

19. Warnings and errors

The controller displays current errors and warnings in the form of icons on the sidebar of the user interface. The icons will remain visible on the screen until the user confirms the event in the "Active warnings and errors" tab, only if the error or warning has been resolved. After confirmation, the message will disappear from the list. If the message is still visible, the root cause of the error or warning has not been resolved. Error information is also displayed in the form of a text message on the main interface view. This also applies to errors and warnings of internal inverters. The controller reads the inverter messages and displays them along with a description. The messages can be sorted by their impact on the compressor operation:

Warning - does not affect compressor operation Critical error - emergency (immediate) motor stop Non-critical error - standard motor stop

In the event of any error, it will not be possible to restart the motor as long as the error remains active.

19.1. Warnings

19.2. Warnings of the controller

Error code	Warning Name	Туре	Description
W01	Inspection Necessary	Warning	The date set by the service techni- cian on which the overhaul should be performed has arrived.
W02	Service due soon	Warning	The service date set by the service technician is due soon.
W03	Network pressure too high	Warning	The network pressure is close to the maximum value set by the service technician.
W04	Low network pressure	Warning	The network pressure is close to the minimum value set by the service technician.
W05	Received pressure values are invalid	Warning	Driver returns information that the pressure values are invalid.
W06	Oil replacement due soon	Warning	The oil replacement date set by the service technician is due soon.
W07	High motor oil temperature warning	Warning	The oil temperature is close to the maximum value set by the service technician.
W08	Necessary oil change	Warning	The date set by the service tech- nician on which the oil should be changed has arrived.
W09	Oil filter replacement time due soon	Warning	The oil filter replacement date set by the service technician is due soon.
W10	Necessary oil filter inspection	Warning	The date set by the service techni- cian for the oil filter inspection has arrived.

Table 24: Warnings

Error code	Warning Name	Туре	Description
W11	Oil filter error [OF]	Warning	The oil filter sensor reports that an
			error has occurred.
W12	Oil separator replacement	Warning	The oil separator replacement date
	due soon		set by the service technician is due
			soon.
W13	Necessary oil separator re-	Warning	The date set by the service techni-
	placement		cian on which the oil separator filter
			inspection must be performed has
			arrived.
w14	Separator error [SEP]	Warning	The separator sensor reports that
			an error has occurred.
W15	Air filter replacement due	Warning	The air filter replacement date set
	soon		by the service technician is due
			soon.
W16	Necessary air filter replace-	Warning	The date set by the service techni-
	ment		cian for the air filter inspection has
			occurred.
W17	Air filter error [AF]	Warning	The air filter sensor reports that an
14/20			error has occurred.
W20	Belt tension check time is due	Warning	Service technician set date to check
14/01	Soon		beit tension is due soon.
VVZI	Beit Tension Check Neces-	vvarning	The date set by the service techni-
	Sary		arrived
	Dryor not roady	Warning ronow	The dryer is not ready for operation
VVZ4	Dryer not ready	able	The dryer is not ready for operation.
W25	Battery warning	Warning	Due to a battery issue, the controller
1120		littaining	does not save the date.
W26	Controller battery low	Warning	The controller battery is low.
W27	Controller battery critically	Warning	The controller battery is critically
	low		low.
W28	CT short circuit	Warning	Sensor has been misconnected or
		Ū	some part has been damaged.
W29	No CT	Warning	Driver returns information that the
			compressor has no CT connected.
W34	Network operation commu-	Warning	The controller informs that there
	nication error	_	was a network operation problem.
W35	Slave compressor 1 commu-	Warning	Slave compressor 1 is not connec-
	nication error		ted to the network, or there is a com-
			munication error.
W36	Slave compressor 2 commu-	Warning	Slave compressor 2 is not connec-
	nication error		ted to the network, or there is a com-
			munication error.
W37	Slave compressor 3 commu-	Warning	Slave compressor 3 is not connec-
	nication error		ted to the network, or there is a com-
			munication error.

Error code	Warning Name	Туре	Description
W40	Network operation has been	Warning	Network operation has been dis-
	disabled on master controller		abled or lost connection on master
			controller.
W41	User Counter 1 necessary in-	Warning	The date set by the service techni-
	spection		cian on which to perform the inspec-
			tion of the user counter 1.
W42	User Counter 2 necessary in-	Warning	The date set by the service techni-
	spection		cian on which to perform the inspec-
			tion of the user counter 2.
W43	User Counter 1 review date is	Warning	Service technician set date ap-
	due soon		proaching for general Inspection.
W44	User Counter 2 Inspection is	Warning	Service Technician set date ap-
	due soon		proaching for general Inspection.
W45	Inverter Warning	Warning	A warning occurred on the inverter.
W48	Motor bearing lubrication re-	Warning	Motor bearing lubrication service
	quired		counter exceeded set value.
W49	Motor Bearing Lubrication	Warning	Warning of Bearing Lubrication Ser-
	Time Approaching		vice Counter Approaching Expira-
			tion.

19.3. DANFOSS inverter warning information

Error code	Error description
W1	Low 10V voltage
W2	Live zero error (W2)
W3	No motor
W4	Power loss
W5	High DC circuit voltage
W6	Low DC circuit voltage
W7	DC circuit overvoltage
W8	DC circuit voltage below minimum
W9	Inverter overload
W10	ETR motor overheating
W11	Motor overheating
W12	Torque limitation
W13	Overcurrent
W14	Ground error
W17	TO controller control
W25	Brake resistor
W26	Brake overload
W27	IGBT brake
W28	Brake check
W34	Fieldbus error

Table 25: Inverter warnings

Table 25: Inverter warnings

Error code	Error description
W36	Power failure
W47	Low 24V power supply
W49	Maximum speed limit
W59	Current limit
W62	Output frequency limit
W64	Voltage limit
W65	Control card temperature
W66	Low temp.
W68	Safe stop
W69	Power card overheating
W90	Encoder signal loss

19.4. YASKAWA inverter warning information

Table 26:	Inverter	warnings
-----------	----------	----------

Error code	Error description
dEv	Speed deviation
CALL	Communication error
oH2	Inverter overheat warning
oH3	Motor overheat warning
DC Uv	Supply voltage too low

19.5. Delta inverter warning information

Table 27: Inverter warnings

Error Code	Error Description
CE1	Invalid Modbus RS-485 function code
CE2	Invalid Modbus RS-485 data address
CE3	Invalid Modbus RS-485 data value
CE4	Modbus RS-485 data writing is set to read-only
CE10	Modbus RS-485 timeout
oH1	AC motor detects IGBT overheating and above protection level warning
	0H1
oH2	The controller has detected capacitor overheating
uC	Low current
oSPD	Overspeed warning
dAvE	Overspeed deviation warning
PHL	Input Phase Loss Warning
ot1	Excess torque warning 1
ot2	Over torque warning 2
Table 27: Inverter warnings

Error Code	Error Description
oH3	Engine overheating warning. The AC motor drive detects that the tem- perature inside the motor is too high
OPHL	Output phase loss

19.6. ABB inverter warning information

Table 28:	ABB	inverter	warning	information
-----------	-----	----------	---------	-------------

Kod błędu	Opis błędu
0xA2B1	Overcurrent
0xA2B3	Earth leakage
0xA2B4	Short circuit
0xA2BA	IGBT overload
0xA3A1	DC link overvoltage
0xA3A2	DC link undervoltage
0xA3A3	DC not charged
0xA490	Incorrect temperature sensor setup
0xA491	External temperature 1 warning
0xA4A0	Control board temperature
0xA4A1	IGBT overtemperature
0xA4A9	Cooling
0xA4B0	Excess temperature
0xA4B1	Excess temperature difference
0xA4B2	IGBT temperature
0xA581	Fan error
0xA582	Auxiliary fan missing
0xA5A0	Safe torque off
0xA5F0	Charging feedback error
0xA6A4	Wrong motor nominal values
0xA6A5	No motor nominal values
0xA780	Motor stall
0xA792	Brake resistor wiring error
0xA793	Brake resistor excess temperature
0xA79C	Brake chopper IGBT excess temperature
0xA7A2	Mechanical brake opening failed
0xA7CE	Communication loss

19.7. Errors

Error code	Warning name	Туре	Description
E01	Power asymmetry error	Critical error	Power supply phase shift
		(auto restart	
		possible)	
E02	Phase sequence error	Critical error	Incorrect phase sequence detec-
			ted.
E03	Thermal fault	Critical error	Motor temperature exceeded.
E04	Network pressure too high	Critical error	The controller informs that the net-
			work pressure is too high.
E05	No network pressure sensor	Critical error	The controller informs that there is a
			problem with the pressure sensor.
E06	Network pressure sensor	Critical error	The sensor has been connected in-
	short-circuit		correctly or it is faulty.
E07	No pressure sensor selected	Critical error	Select a pressure sensor.
E08	Oil temperature too high	Critical error	The controller informs that the oil
			temperature is too high.
E09	Oil temperature too low	Recurring error	The compressor cannot operate
			correctly because the oil temperat-
			ure is too low.
E10	Oil temperature rise too slow	Critical error	Oil temperature is increasing too
			slowly for the compressor to work
			correctly.
E11	Oil temperature sensor short-	Critical error	The sensor has been connected in-
F10		Oritical arman	Correctly of it is faulty.
E12	No oil temperature sensor	Critical error	The controller informs that there is
			a problem with the oil temperature
F1 2	Motor undergurrent offer	Critical arrar	Selisul.
EIS	start un	Childen en or	after start up to maintain correct
	start-up		compressor operation
F1/	Motor overcurrent	Critical error	The current to the motor is too high
	Rowor failuro	Pocurring orror	Power supply received inadequate
	r ower laildre	Recurring error	voltage level
F16	Motor temperature too high	Critical error	The controller informs that the mo-
	Motor temperature too high	Childar chion	for temperature is too high
F17	No motor temperature sensor	Critical error	The controller informs that there is
			a problem with the fan
F18	Motor temperature sensor	Critical error	The sensor has been connected in-
	short circuit		correctly or it is faulty.
E21	Fan error	Non-critical error	The controller informs that there is
		(auto restart pos-	a problem with the fan.
		sible)	- p
E22	Drver not ready	Recurring error	The drver is not ready for operation.
E23	Emergency stop	Critical error	C The controller informs that some
			factor caused an emergency stop of
			the compressor.
E24	Controller memory has been	Critical error	The controller has been restored to
	cleared		factory settings.

Table 29: Errors

Error code	Warning name	Туре	Description
E25	Inverter error	Critical error	An error occurs on the inverter.
E26	Communication error with in- verter	Critical error	Incorrect communication with in- verter.
E31	24 V circuit voltage too low	Critical error	24 V circuit voltage below minimum level.
E32	Oil injection pressure drop er- ror	Critical error	Oil injection pressure drop too high.
E33	Oil injection pressure too low	Critical error	Oil injection pressure too low.
E34	Short-circuit of the oil injection pressure sensor	Critical error	Short-circuit at the input of the oil in- jection pressure sensor.
E35	Oil injection pressure sensor not connected	Critical error	No oil injection pressure sensor connected.
E36	Short-circuit of oil pressure sensor	Critical error	Short-circuit at oil pressure sensor input.
E37	Oil pressure sensor not con- nected	Critical error	No oil pressure sensor connected.

19.8. DANFOSS inverter errors

Table 30: Inverter errors

Error code	Error type	Error description		
A2	Critical error	Live zero error		
A4	Critical error	Phase loss		
A7	Critical error	DC circuit overvoltage		
A8	Critical error	DC circuit voltage below minimum		
A9	Critical error	Inverter overload		
A10	Critical error	ETR motor overheating		
A11	Critical error	Motor overheating		
A12	Critical error	Torque limitation		
A13	Critical error	Overcurrent		
A14	Critical error	Ground error		
A16	Critical error	Short circuit		
A17	Critical error	TO controller control		
A25	Critical error	Brake resistor		
A26	Critical error	Brake overload		
A27	Critical error	GBT brake		
A28	Critical error	Brake check		
A30	Critical error	U phase loss		
A31	Critical error	V phase loss		
A32	Critical error	W phase loss		
A33	Critical error	Pre-charging system error in start-up		
		phase		
A34	Critical error	Communication bus error		
A36	Critical error	Power failure		

Table 30: Inverter errors

Error code	Error type	Error description
A38	Critical error	Internal error
A47	Critical error	Low 24V power supply
A48	Critical error	Low 1.8V power supply
A63	Critical error	Brake error
A65	Critical error	Control card temperature
A67	Critical error	Option change
A68	Critical error	Safe stop
A69	Critical error	Power card temperature
A80	Critical error	Inverter running

19.9. YASKAWA inverter errors

Error code	Error type	Error description
Uv1	Critical error	DC supply voltage too low
SC	Critical error	Output short circuit or IGBT error
GF	Critical error	Ground error
oC	Critical error	Overcurrent
OV	Critical error	DC supply overvoltage
оН	Critical error	Heat sink overheat
oH1	Critical error	Heat sink overheat
oL1	Critical error	Motor overloaded
oL2	Critical error	Inverter overload
PF	Critical error	Input phase loss
LF	Critical error	Output phase loss
oH4	Critical error	Motor overheating
CE	Critical error	Modbus communication error
EF1	Critical error	External error - S1 terminal
SCF	Critical error	Safety system fault
oH3	Critical error	Motor overheating

Table 31: Inverter errors

19.10. Delta inverter errors

Table 32: Inverter errors

Error code	Error description
ocA	The output current exceeds 2.4 times the rated current during acceleration. When ocA occurs, the drive closes the output gate immediately. The engine is idling and the display shows the ocA error
ocd	The output current exceeds 2.4 times the rated current during deceleration. When ocd occurs, the drive closes the output gate immediately. The engine is idling and the display shows ocd error

Error code	Error description
ocn	The output current exceeds 2.4 times the rated current during deceleration. When
	ocn occurs, the drive closes the output gate immediately. The engine is idling and
	the display shows an ocn error
GFF	When one of the output terminals is grounded, the short circuit current is greater
	than the Pr setting value
000	A short circuit has been detected between the upper bridge and the lower bridge of
	the IGBT module
ocS	Excessive current or hardware error in stopping current detection. After ocS occurs,
	turn on the power. If a hardware failure occurs, cd1, cd2, or cd3 will appear on the
	display.
ovA	DC bus overvoltage during acceleration, when ovA occurs, the drive closes the
	output gate, the motor idling and the display shows ovA error.
ovd	Excess DC bus voltage during deceleration. When overvoltage occurs, the drive
	immediately closes the output gate, the motor is idling, and the display shows ovd
	error
ovn	Excessive DC bus voltage during deceleration. When an overvoltage occurs, the
	the even error
015	Dewer surge when stepping
003	The DC hus voltage is lower than the Dr setting value. 06.00 during acceleration
LVA	The DC bus voltage is lower than the Pr setting value. 06-00 during acceleration
Lvu	The DC bus voltage is lower than the Pr setting value. 06-00 during acceleration
	The DC bus voltage is lower than the Privalue, 06,00 value at step. Valtage dates
LVS	tion bardware failure
Orn	
	The IGBT temperature exceeds the protection level
	The capacity temperature exceeds the protection level
	IGBT hardware error in temperature detection
tH20	Hardware error in canacitor temperature detection
	The AC motor drive detects excessive current. The overload capacity persists for 1
UL	minute when the drive is outputting 120% of the drive's rated output current
0H3	Engine overheating
ot1	When the output current exceeds the over-torque detection level
ot2	When the output current exceeds the over-torque detection level
	Low current detection
cd1	U phase current detection error when power on
cd2	Phase V current detection error when power on
cd3	W phase current detection error when power on
HdO	cc (current terminal) hardware protection error when power is on
Hd1	Oc hardware protection error with power on
Hd2	Hardware protection error after power-up
Hd3	occ IGBT short circuit detection protection error when power on
EF	External error. When the drive decelerates based on the Pr setting 07-20 FE error
	is displayed on the keypad
EF1	When the MIx=EF1 contact is turned on, the output stops immediately and displays
	EF1 on the keypad. The engine is idling
CE1	The communication command is invalid

Table 32: Inverter errors

Error code	Error description
CE2	Data address is invalid
CE3	The data value is invalid
CE4	Data is written to a read-only address
CE10	MODBUS transmission timeout occurred
bF	Motor drive brake transistor is abnormal (for models with built-in brake transistor)
S1	Emergency stop for external safety
Brk	External mechanical brake error The MO terminal is active when MOx=12, 42, 47
	or 63, but MIx=55 does not receive a signal for mechanical brake operation during
	the time set in Pr. 02-56.
OPLH	Output phase loss
oL3	Low frequency and high current protection

20. Controller dimensions

Figure 50: Controller housing drawing